Senin, 26 September 2011

METABOLISME SEL

METABOLISME SEL

A.       Pengertian Dasar

Keseluruhan proses kimia suatu oerganisme : METABOLISME. Metabolisme (metabole/Yunani = berubah)
Metabolisme merupakan ciri kehidupan yang terjadi (muncul) dari interaksi spesifik antara molekul2 di dalam lingkungan sel yang teatur dengan baik.
       Secara keseluruhan, metabolisme dikaitkan dengan pengaturan sumber daya materi dan energi dari sel. Proses metabolisme yang terjadi melalui proses pembebasan energi dengan cara merombak molekul-molekul kompleks menjadi senyawa yang lebih sederhana disebut katabolisme (respirasi seluler), contoh gula/glukosa (C6H12O6)/ bahan organik lainnya
→ CO2 dan H2O. Energi yang tersimpan dalam molekul organik (gula) dapat digunakan untuk melaksanakan kerja sel. Sebaliknya proses pemakaian energi untuk membangun molekul kompleks dari molekul- molekul lebih sederhana disebut anabolisme, contoh pada proses sintesis asam amino menjadi protein. Pada proses metabolisme sesungguhnya dapat terjadi dari proses katabolisme dilanjutkan dengan proses anabolisme atau sebaliknya dari proses anabolisme menjadi proses katabolisme.
       Energi merupakan dasar dari seluruh proses metabolisme sehingga untuk memahami proses metabolisme perlu dipahami lebih dahulu tentang energi.
B.      Organisme Mentransformasi (menguraikan dan menggunakan )Energi

Energi adalah kapasitas atau kemampuan untuk melaksanakan kerja . Aktivititas kerja pada materi di dalam sel dapat terjadi karena gesekan atau karena proses gravitasi. Energi juga merupakan kemampuan untuk mendaur ulang suatu kumpulan materi (kotoran ternak → kompos). Setiap materi yang berpindah atau bergerak memiliki bentuk energi yang disebut sebagai energi kinetik atau energi gerak. Objek atau benda (materi di dalam sel) bergerak melakukan kerja dengan cara menggerakkkan benda lain, contoh misalnya kontraksi otot kaki aakan menggerakkkan atau mendorong pedal sepeda. Cahaya juga merupakan bentuk energi kinetik yang dapat digunakan untuk melakukan kerja seperti proses fotosintesis pada tumbuhan hijau. Panas atau energi termal juga merupakan energi kinetik yang dihasilkan dari proses pergerakan molekul secara acak. Suatu objek yang sedang diam dan tidak bergerak masih tetap memiliki energi yang merupakan kapasitas untuk melakukan kerja. Energi tersimpan (energi potensial) adalah energi yang dimiliki oleh materi karena lokasi atau strukturnya, contoh air dalam bendungan menyimpan energi karena ketinggiannya. Contoh lainnya adalah energi kimia yang tersimpan dalam molekul yaitu bentuk energi karena perbedaan struktur atom-atomnya.



C.      Transformasi Energi Kehidupan

1.   Hukum Termodinamika 1
Perubahan bentuk (transformasi energi) yang terjadi dalam suatu kumpulan materi disebut termodinamika.
Sistem digunakan untuk menyatakan materi yang sedang dipelajari. Transformasi yang terjadi diluar sistem, energi dapat ditransfer aatu dipindahkan ke sistem lainnya. Sebaliknya sistem yang terjadi hanya didalam materi disebut sistem tertutup. Energi dapat ditransfer dan ditransformasikan, akan tetapi tidak dapat diciptakan atau dimusnahkan disebut dengan hukum kekekalan energi atau Hukum Termodinamika 1, contoh cara mengubah cahaya menjadi energi kimia pada tumbuhan hijau (sebagai pentransformasi energi), bukan sebagai produsen.


2.   Hukum Termodinamika 2
Setiap transformasi energi dapat membuat jagat raya atau organel sel menjadi tidak teratur. Ukuran ketidakteraturan atau terjadinya proses pengacakan di jagat raya atau di dalam sel disebut dengan entropi. Semakin acak suatu kumpulan materi (di dalam sel) maka nilai entropinya semakin besar. Hukum Termodinamika 2 berbunyi setiap transfer atau transformasi energi akan meningkatkan entropi jagat raya. Pada banyak kasus bahwa peningkatan entropi sangat jelas terlihat pada kerusakan fisik suatu struktur sistem, contoh pada proses pelapukan materi terjadi peningkatan entropi di jagat raya. Contoh lain misalnya 25% energi kimia yang tersimpan dalam tangki bahan bakar mobil digunakan untuk menggerakkan mobil, sisanya 75% hilang sebagi panas yang tersebar di sekeliling mesin tersebut. Contoh lainnya adalah energi yang tersimpan dalam pakan atau makanan yang teserap dalam tubuh hanya sekitar 25% sisanya 25% digunakan dalam sel dan sebagian ikut terbuang (sisa metabolisme) yang dapat berupa CO2, H2O, dan bahan yang tidak dapat dicerna.


D.      Organisme Hidup Memanfaatkan Energi Bebas

Jumlah energi bebas didalam suatu sistem (G), total energi dalam sistem itu (H) dan entropiya (S), dan Suhu mutlak (T). Hubungan energi dalam suatu sistem hidup yang dipengaruhi oleh suhu adalah sebagi berikut:
G = H-TS
Suhu akan memperbesar entropi karena pemanasan. Hal ini karena suhu diguakan untuk mengukur intensitas gerak dalm molekul yang terecak dalam sel. Ketidakteraturan molekul di dalam sel ini akan menghasilkan panas yang berbeda. Tidak semua energi yang tersimpan didalam sistem (H) dapat dimanfaatkan untuk melakukan kerja. Sehingga untuk menghitung kapasitas maksimum sistem itu dalam melakukan kerja maka kita perlu mengurangi energi total akibat dari ketidakteraturannya didalam sistem. Pada setiap proses yang terjadi secara spontan maka energi bebas dalam sistem itu akan berkurang. Perubahan energi bebas ketika sistem bergerak dari suatu keadaan tertentu ke sutau keadaan yang bereda digambarkan dengan
 ∆G =  Gakhir-Gawal dengan kata lain ∆G = ∆H-T∆S.


E.      Energi Bebas dan Kesetimbangan

Terdapat suatu hubungan penting antara energi bebas dan kesetimbangan, termasuk kesetimbangan kimia dalam sel. Energi bebas meningkat ketika suatu reaksi bergerak menjauhi kesetimbangan. Untuk reaksi yang berada pada kesetimbangan, maka perubahan energi adalah sama dengan nol karena tidak ada perubahan neto (bersih) dalm sistem itu.


F.       Energi Bebas dan Metabolisme

Reaksi Eksergonik dan Endergonik dalam metabolisme . Berdasarkan perubahan  energi bebasnya, reaksi kimiawi dapat dikelompokkan sebagai reaksi eksergonik (yang artinya “mengeluarkan energi”) atau reaksi endergonik (yang artinya “memasukkan energi”). Suatu rekasi eksergonik berlangsung dengan mengeluarkan energi bebas. Karena campuran kimiawi kehilangan energi bebas, ∆G adalah negatif untuk suatu reaksi eksergonik. Dengan kata lain, reaksi- reaksi eksergonik adalah yang terjadi secara spontan. Besarnya ∆G untuk suatu reaksi eksergonik adalah jumlah keja maksimum yang dapat dilakukan oleh reaksi itu. Kita dapat menggunakan contoh reaksi kesuluruhan respirasi seluler sebagai berikut:
C6H12O6 + 6 O2 → 6 CO2 + 6 H2O
∆G = -686 kkal/mol (-2870 kJ/mol)

       Untuk setiap mol (180 g) glukosa yang dirombak melalui respirasi, dihasilkan 686 kilokalori atau (2870 kilojoule) energi yang biasa digubakan untuk melakukan kerja (dibawah kondisi yang disebut para saintis sebagai kondisi standar). Karena energi harus kekal, produk kimiawi hasil respirasi menyimpan lebih sedikir 686 kkal energi bebas dibandingkan reaktan. Pada intinya, hasilnya adalah sebah proses yang menghabiskan energi dengan menyerap sebagian besar energi bebas yang tersimpan dalam molekul gula.
       Suatu reaksi endergonik merupakan reaksi yang menyerap energi bebas dari sekelilingnya. Karena jenis reaksi ini menyimpan energi bebas dalam molekul, maka ∆G adalh positif. Reaksi energi itu adalah nonspontan, dan besar ∆G adalah jumlah energi yang diperlukan untuk menggerakkan reaksi itu. Jika suatu proses kimiawi adalah bersifat eksergonik (menuruni bukit) adalm satu arah, maka proses kebalikannya harusnya endergonik (mendaki bukit). Suatu proses reversibel tidak akan menuruni bukit pada kedua arah yang berlawanan tersebut. Jika ∆G  = -686 kkal/mol untuk respirasi, agar fotosintesis dapat menghasilkan gula dari karbondioksida dan air, maka harus mempunyai nilai ∆G= +686 kkal/mol. Produksi gula dalam sel-sel daun suatu tumbuhan sangat endergonik, suatu proses mendaki bukit yang digerakkan oleh penyerapan energi cahaya matahari.


G.      ATP Menggerakkan Kerja Seluler Melalui Pengkopelan Reaksi Eksergonik dengan Reaksi Endergonik

Suatu kerja sel melalui tiga jenis kerja yang utama:
1.   Kerja mekanis, seperti getaran silia, kontraksi sel otot dan pergerakan kromosom selama reproduksi seluler.
2.   Kerja Transpor, pemompaan bahan-bahan melewati membran melawan arah pergerakan spontan.
3.   Kerja kimiawi, pendorongan reaksi endergonik yang tidak akan terjadi secara spontan, seperti sintesis polimer dari monomer-monomer.
Pada sebagian besar kasus, sumber energi yang akan segera menggerakkan kerja seluler adalah ATP.

1.   Struktur dan Hidrolisis ATP
ATP (Adenosin trifosfat) sangat erat hubungannya dengan satu jenis nukleotida yang ditemukan dalam asam nukleat. ATP memiliki basa nitrogen adenin yang berkaitan dengan ribosa, seperti pada nukleotida adenin pada RNA. Akan tetapi, pada RNA, satu gugus fosfat berkaitan dengan ribosa. Adenin trifosfat memiliki suatu rentai yang mempunyai tiga gugus fosfat yang berkaitan dengan ribosa.
   Ikatan antara gugus-gugus fosfat pada ekor ATP dapat diputuskan melalui hidrolisis. Ketika ikatan fosfat terminal diputuskan, suatu molekul fosfat anorganik (yang disingkat Pi) meninggalkan ATP yang kemudian menjadi adenosin difosfat atau ADP. Reaksi itu adalah eksergonik da di bawah kondisi laboratorium, membebaskan7,3 kkal energi per mol ATP yang dihidrolisis:
ATP + H2O → ADP + Pi
∆G = -7,3 kkal/mol (-31 kJ/mol)
   Inilh perubahan energi bebas yang diukur pada kondisi standar. Akan tetapi, kondisi kimiawi dan fisik dalam sel tidak sesuai dengan kondisi standar. Ketika rekasi terjadi dlam lingkungan seluler bukan dalam tabung reaksi, ∆G sesungguhnya adalah sekitar -13 kkla/mol, 78% lebih besar daripada energi yang dihasilkan oleh hidrolisis ATP pada kondisi standar.
   Karena hidrolisisnya membebaskan energi, ikatan fosfat ATP sering kali disebut jga sebagi ikatan fosfat berenergi tinggi, akan tetapi istilah itu sesungguhnya menyesatkan. ATP umumnya bukanla ikatan kuat, seperti yang tersirat dalam kata “berenergi tinggi” itu. Pada kenyataannya, dibandingkan dengan sebagian besar ikatan pada molekul organik, ikatan ini relatif lemah, dan karena ikatan tersbut agak kurang stabil maka hidrolisisnya menghasilkan energi. Produk hidrolisis (ADP dan Pi) lebih stabil dibandingkan dengan ATP. Ketika suatu sistem berubah ke arah yang elbih stabil, perubahan itu bersifat eksergonik. Dengan demikian, pembebasan energi selama hidrolisis ATP berasal dari suatu perubahan kimiawi menuju keadaan yang lebih stabil, bukan dari ikatan fosfat itu sendiri. Kenapa ikatan fosfat sedemikian rapuhnya? Jika kita memeriksa ulang molekul ATP, kita dapat mengetahui atau melihat bahwa ketiga gugus fosfatnya bermuatan negatif. Muatan-muatan yang sama seperti ini jika mengumpul tidak dapat tenang, dan tolak-menolak antara muatan tesebut menyebabkan ketidakstabilan daerah molekul ATP ini. Ekor trifosfat ATP merupakan ekuivalensi kimiawi (kesetaraan tetapi yang berfifat kimiawi) dengan per atau pegas yang diberikan beban.

2.   Bagaimana ATP Melakukan Kerja
Ketika ATP dihidrolisis dalam suatu tabung reaksi, pelepasan energi bebas hanya sedikit memanaskan air di sekelilingnya. Dalam sel, keadaan seperti itu menjadi suatu penggunaan sumberdaya energi yang tidak efisien dan berbahaya. Dengan bantuan enzim spesifik, sel itu akan mampu mengkopel energi hasil hidrolisis ATP secara langsung ke proses endergonik dengan cara mentransfer suau gugus fosfat dari ATP ke beberapa molekul lain. Penerima gugus fosfat itu kemudian disebut terfosforilasi. Kunsi untuk pengkpelan tersebuta adalah pembentukan intermediet terfosforilasi ini yang lebih reaktif (kurang stabil) ika dibandingkan dengan molekul semula. Hampir semua keja seluler bergantung pada pemberian energi ATP ke molekul lain melalui transfer gugus fosfat. Misalnya, ATP akan menggerakkan (memberi tenaga) pada pergerakan otot dengan cara mentransfer fosfat ke protein kontraktil otot.
3.   Regenerasi ATP 
Suatu organisme yang sedang bekerja menggunakan ATP secara terus-menerus, akan tetapi ATP adalah sumberdaya yang dapat diperbaharui, yang dapat diregenerasi sengan cara penambahan fosfat ke ADP. Siklus ATP bergerak dengan laju yang sangat cepat.
Misalnya, suatu sel otot yang sedang bekerja mendaur-ulang seluruh kumpulan ATP setiap menit. Laju pergantian seperit itu menggambarkan 10 juta molekul ATP yang dikonsumsidan diregenerasi perdetik oleh setipa sel. Jika ATP diregenerasi melalui fosforilasi ADP, maka manusia kan mengkonsumsi ATP hampir seberat tubuhnya setiap hari.
Karena suatu proses reversibel tidak dapat berjalan menuruni bukit pada kedua arah, regenerasi ATP dari ADP pada prinsipnya dalah endergonik:
Jalur katabolik (eksergonik), khususnya respirasi seluler, menyediakan energi untuk proses endergonik untuk pembuatan ATP. Tumbuhan juga menggunakan energi cahaya untuk menghasilkan ATP.
Dengan demikian, siklus ATP adalah suatu pintu putar yang dilalui energi pada wakut pemindahan dari proses katabolik ke jalur anabolik.



1 komentar: